Windblown Sand Modelling and Mitigation

MAFD - TCS Lorenzo RAFFAELE

von Karman Institute for Fluid Dynamics Environmental and Applied Fluid Dynamics department

HyPer SMA

January 28th, 2021

von KARMAN INSTITUTE FOR FLUID DYNAMICS

WSMM

OPTIFLOW

Industrial Motivation: coastal zones

arid and desert regions active sand deposits coastal dunes

Windstorm frequency	+44%
Windstorm intensity	+96%

US

EU

Industrial Motivation: desert regions

arid and desert regions active sand deposits coastal dunes

Industrial Motivation: railway megaprojects

Railway megaprojects

- Iron Silk Road
- Gulf Cooperation Council Network
 - Arab League Network

arid regions

northern desert belt

Market potential

Railway length

000 B\$ • 00000 Km

4

Phenomenology

von KARMAN INSTITUTE FOR FLUID DYNAMICS

interface

Sand bed

Deterministic models

Microscopic models

Equilibrium of the moments Entraining aerodynamic forces VS Stabilizing forces

Macroscopic models

- Semi-empirical (free parameters)
- Trend VS d

Probabilistic models

- Scatter of experimental data
- Random turbulent wind flow, bed • grain geometry, interparticle forces Zimon (1982)

 $u_{*t} = A_{\sqrt{\frac{\rho_p - \rho_a}{\rho_a}}} gd$

Bagnold (1941)

Duan et al. (2013)

4 microscopic r.v.s Modelling and technical difficulties

Modelling: Q

von KARMAN INSTITUTE FOR FLUID DYNAMICS

Sand Mitigation Measures: Source

asphalt-latex mixture

• Hedge system

natural crusting

straw checkerboard

array line-like obstacles

gravel surface

8

Sand Mitigation Measures: Path

9

Sand Mitigation Measures: Receiver

von KARMAN INSTITUTE

an uncharted territory for modern engineering...

von KARMAN INSTITUTE

11

Windblown Sand Action: categorization

Environmental

- site-dependent
- inborn randomness

<u>Free</u>

winddependent accumulation

<u>Variable</u>

- long-term varying accumulation process
- non monotonic (periodic sand removal)

- wind

 \sim windblown snow

~ snow

 \sim/\neq snow

Wind and sand modelling

Time-variant reliability analysis

Evaluation of sand removal period

Windblown Sand Action: modelling chain

Incoming Windblown Sand

$Q_{in}(\underline{u_{*t}}, \omega_s, u_*)$

Uncertainty

"Lack of exact knowledge, regardless of what is the cause of this deficiency" Refsgaard et al. (2007)

Aleatory • Sand uncertainties: grain size, shape, relative position, surface cleanliness, grain size distribution.

- <u>Wind uncertainties</u>: turbulent flow inborn variability, uncontrolled environmental conditions, e.g. temperature, humidity.
- Epistemic•Model uncertainty: simplified representation of the real physical
behaviour, identification of relevant variables, hypothesis, interactions
left out. Lack of a shared definition of u_{*t} Shao (2008)
 - <u>Measurement uncertainty</u>: errors and/or different procedures.
 - <u>Parameter uncertainty</u>: values of model parameters.

- Statistical approach Nonlinear regression
 - Copula-based regression

Incoming Windblown Sand: probabilistic u_{*t}

Incoming Windblown Sand: probabilistic u_{*t}

1 Fitting of marginal distributions $F(d), F(u_{*t}), d, u_{*t} \in \mathbb{R}$

2 From original to copula scale $F(d, u_{*t}) = C\{F(d), F(u_{*t})\}\ C: [0,1]^2 \rightarrow [0,1]$

4 From copula to original scale $(d, u_{*t}) = (F^{-1}(u), F^{-1}(v))$

3 Fitting of Inverted Clayton Copula

$$C(u, v) = u + v - 1 + \left[(1 - u)^{-1/\alpha} + (1 - v)^{-1/\alpha} - 1 \right]^{-\alpha}$$

$$u, v \in [0, 1], \alpha > 0$$

Incoming Windblown Sand: probabilistic u_{*t}

VON KARMAN INSTITUTE FOR FLUID DYNAMICS

Incoming Windblown Sand: probabilistic ω_s

 $Q_{in}(u_{*t},\omega_s,u_*)$

- Sedimentation velocity affects the mode of transport, distribution of particles above the ground, and transport rate
- Discrepancy among semi-empirical laws
- Sedimentation velocity bound to drag coefficient

from L. Raffaele, L. Bruno, D. Sherman (2020), Aeolian Research

Incoming Windblown Sand: probabilistic ω_s

$$Re = \frac{\omega_s d}{\nu_f}$$
$$C_d = \frac{4}{3} \frac{\rho_f (\rho_p - \rho_f)}{Re^2 \mu_f^2} g d^3$$

$$\begin{cases} d = \left[\frac{3}{4} \frac{C_d R e^2 \mu_f^2}{\rho_f (\rho_p - \rho_f) g}\right]^{1/3} \\ \omega_s = \frac{R e v_f}{d} \end{cases}$$

Incoming Windblown Sand 2 mean wind velocity profile 3 Ζ sand flux profile $U_{10}(z)$ q(z) $T \propto U_*$ $\tau_{t} \propto \mathcal{U}_{*}$ sand bed I shear stress @ wind-sand interface $u_* = u_*(U_{10}, z_0) \qquad f(u_*) = \frac{kf(U_{10, ref})}{\ln z_{ref}/z_0} \qquad u_{*t}$ Wind shear velocity $u_{*t} \approx u_{*t}(d)$ $f(u_{*t}|d)$ from Raffaele et al (2016) <u>Threshold shear velocity</u> $Q_{in} = \int_{0}^{+\infty} q(z) dz \quad f(Q_{in}) = \begin{cases} A \sqrt{\frac{d}{d_r}} \frac{\rho_a}{g} f(u_*)^3 \left[1 - \frac{f(u_{*t}|d)}{f(u_*)} \right] & \text{if } u_* > u_{*t} \\ 0 & \text{if } u_* \le u_{*t} \end{cases}$ Incoming sand transport rate

from Raffaele et al (2017a)

FOR FLUID DYNAMICS

Windblown sand action

Site characteristics

from Raffaele et al (2017b)

24

Straight Vertical Wall (SVW) from multiphase CFD simulation

Eulerian 1st order multiphase model for windblown sand

from A. Lo Giudice, L. Preziosi (2020), App. Math. Modelling

Multiphase simulation

Standard CFD simulation

• Wind tunnel setup in L-1B

• PIV-PTV measurement setup

• Sand concentration and morphodynamics

□o data

• Wind Tunnel test

• Standard CFD simulation

Sedimentation coefficient: porous fence

Sedimentation coefficient: embankment & track

Results: SVW configuration, North side

von KARMAN INSTITUTE FOR FLUID DYNAMICS

34

Results: SVW configuration, North side

Lesson learnt: design perspective

• S4S scores overall good performance, while SVW shows the poorest performance.

 $\frac{T_{k,track}(S4S)}{T_{k,track}(SVW)} \sim 6 \quad \frac{T_{k,emb}(S4S)}{T_{k,emb}(SVW)} \sim 6 \quad \frac{T_{k,SMM}(S4S)}{T_{k,SMM}(SVW)} \sim 3$

- The higher the wind occurrence (i.e. North side):
 - the lower T_k , for a given SMM capacity
 - the higher the required capacity, for a given T_k

 T_k as a design requirement for SMM

Life Cycle Cost Analysis

cumulated savings are impressive w.r.t. railway avg worth (in ME ~4M\$/km) from Raffaele & Bruno (2020)

Conclusion & Perspectives

To conclude..

The proposed modelling framework allows to:

- Move from trial-and-error to rationale design
- Assess the performances of SMMs
- Plan sand removal maintenance operations
- Assess the economic impact of SMMs

Some perspectives...

- Development of innovative Wind-Sand tunnel tests to assess the sedimentation coefficient of different SMM
- Extrapolation from scale to full-scale conditions under different environmental setups

Conclusion & Perspectives

lyPerSMM

Hybrid Performance assessment of Sand Mitigation Measures

VON KARMAN INSTITUTE FOR FLUID DYNAMICS

OPTIFLOW

WSMM

HyPer SMM received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 885985

